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Motivating question:

How can we get everything that’s 
going on in language…

… into a computational model?

�� ��
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A: Through learning how to represent 
language in large, continuous vector 
spaces

“red” = [0.6, 53.0, 2.4, 0.2 ...]

“...what light through yonder window breaks” = 
[21.2, 112, 6.8, 22.0 ...]

... ...



Isabel Papadimitriou

Intro Word vectors: Introducing LMs LM Demo DiscussionCount Dense

4

This class:

1) Introduction to vector spaces
2) Word vectors

● Count-based word vectors
● Dense word vectors

3) Introducing language models
4) LM demo
5) LM discussion and analysis
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By the end of this class you’ll:

● Understand some of the basic ideas behind 
modern computational linguistics (and why we 
do what we do)

● Have some familiarity with loading, using, and 
understanding a language model
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This class:

1) Introduction to vector spaces
2) Word vectors

● Count-based word vectors
● Dense word vectors

3) Introducing language models
4) LM demo
5) LM discussion and analysis
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Symbolic representation is great —
but not enough for comp. ling

● Language is symbolic
● We take a complex, continuous world, and we 

compress it into symbols like “apple” or “jump”
● Language analysis is full of abstract ideas, like 

“noun phrase” or “phoneme”

● But, if we want to make a computational model, we 
simply can’t take into account every abstraction at 
once
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● A point in n-dimensional space (for our purposes)

x

y

2

3 (2, 3)

Back to 
continuous 

space
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● A point in n-dimensional space (for our purposes)

x

y

(2, 3)

(1, 0)
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● A point in n-dimensional space (for our purposes)

x

y

(2, 3, 0)

(1, 0, 0)

z
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What is a vector?
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● Our perception stops at 3 dimensions, but we 
don’t have to

A 10-feature vector:
[1, 0, 8, 4, 10, 0, 5, 2, 2, 9]

● Vectors are a very flexible abstraction for 
describing anything that has many features

eg, “A farm with 1 pig, 0 cows, 8 chickens, 4 ducks…”
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heartbreak

ecstatic

valence

arousal

Example: a famous 2-D word 
vector space 

12

[Osgood et al 1957]

contented

music

rage

Far

skulkClose

The vector 
space creates 

a notion of 
distance
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Appears near 
“cat”(#)

Appears near 
“dog”(#)

leash

meow

paws

linguistics

jog
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Example: another 2-D word vector space
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Appears near 
“cat”(#)

Appears near 
“dog”(#)

leash

meow

jog

A relevant 
distance 

metric here 
is angle –

the dog:cat 
ratioClose



Isabel Papadimitriou

Intro Word vectors: Introducing LMs LM Demo DiscussionCount Dense

Example: another 2-D word vector space
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Appears near 
“cat”(#)

Appears near 
“dog”(#)

leash

meow

jog

Far

A relevant 
distance 

metric here 
is angle –

the dog:cat 
ratio



Isabel Papadimitriou

Intro Word vectors: Introducing LMs LM Demo DiscussionCount Dense

Example: another 2-D word vector space

16

Appears near 
“cat”(#)

Appears near 
“dog”(#)

Distance is 
still a 

relevant 
metric!

paws

linguistics
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So, we can get some semantic structure 
from putting words in vector spaces
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● This is great, because vectors can be inputs to 
computational models 

● Vector representations give models some sense 
of the nebulous idea of  semantic relatedness  
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Vector semantics mean that models don’t 
learn every meaning separately
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Predict the next word, the 
previous word was “good”

Predict the next word, the 
previous word was “great”

Language 
Model Task:

Classic ngram model: 
no relation…
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Vector semantics mean that models don’t 
learn every meaning separately
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Predict the next word, the 
previous word was “good”

Predict the next word, the 
previous word was “great”

Language 
Model Task:

Predict the next word, the 
previous word was
[1, 6, 3, 18, ...]

Predict the next word, the 
previous word was
[2, 6, 2, 15, ...]

Vector distance
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types of relationships simultaneously
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ecstatic

valence

arousal

contented

Lots of information: 
1) Medium distance
2) Similar valence
3) Different arousal

This is very powerful 
as we scale up to 

many dimensions!
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Semantic relationships are multifaceted
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● Similarity (desk ⟷ table)

● Relatedness (dog ⟷ leash)

● Semantic frames (buy ⟷ sell)

● Register (automobile ⟷ couture)

● Affect (beaming ⟷ great)

Can we make a 
high- 

dimensional 
vector space to 

capture this 
complexity?
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This class:

1) Introduction to vector spaces
2) Word vectors

● Count-based word vectors
● Dense word vectors

3) Introducing language models
4) LM demo
5) LM discussion and analysis
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We can’t think of every feature…

● It’s hard to hand-construct enough 
interesting features!

(This is a big theme of computational linguistics)

● Let’s see if we can use some things we know to 
make a computational model where we don’t 
choose the features
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Distributional semantics
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If two words have almost identical environments, 
they have almost identical semantics

[Zellig Harris, 1954]

● We wanted a vector representation of meaning…

Idea: represent the environment as a vector

“oculist”, “eye doctor”
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context

Idea: Count word co-occurrences

25

● Count: how many times does a word appear in the 
context window of a center word?

word

● If we have a corpus of language data…

… Every time [ I drive my car I hear that ] noise…
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Counting word-word co-occurrences

26

Word A:
50,000 rows

Word B:
50,000 rows

How many times 
does B appear 

within 4 words of A 
in our corpus?
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Co-occurrence rows are vectors!
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Word A:
50,000 rows

Word B:
50,000 rows

50K-dimensional 
vector of the 

environments 
that A appears in 
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aardvark … computer data result pie sugar

0 … 2 8 9 442 25

0 … 1,670 1,683 85 5 4

Co-occurrence rows are vectors!

28

“cherry”

“digital”

[Jurafsky and Martin 2023, from Wikipedia corpus]
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Co-occurrence rows are vectors!

29[Jurafsky and Martin 2023, from Wikipedia corpus]

● We can ask: How similar are these words? Why are 
they similar?

● There’s ways to improve these vectors, like by 
lessening the weight of common words like “the”

aardvark … computer data result pie sugar

cherry 0 … 2 8 9 442 25

digital 0 … 1,670 1,683 85 5 4
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Our count vectors make a good 
representation that computers can use
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2 8 9 442 25

cherry

1670 1683 85 5 4

digital

1 6 12 512 30

?
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Except… 50K is a lot of dimensions!
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Q: What is the meaning of “spoon”?

A: Well, it never appears with “aardvark” … it often 
appears with “food”... …

This is clearly an inefficient way to 
describe meaning
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Co-occurrence vectors are sparse
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aardvark

Many of the 
entries are 0

Intuitively: many 
more numbers in 

each vector than the 
information they 

contribute

parliament
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This class:

1) Introduction to vector spaces
2) Word vectors

● Count-based word vectors
● Dense word vectors

3) Introducing language models
4) LM demo
5) LM discussion and analysis
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This class:

1) Introduction to vector spaces
2) Word vectors

● Count-based word vectors
● Dense word vectors

3) Introducing language models
4) LM demo
5) LM discussion and analysis
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Every time [ I drive my car I hear that ] noise…

Can we use distributional information to 
learn more succinct embeddings?

35

● Main idea: train classifiers to predict this 
distributional information

● Same data: corpus of word co-occurrences
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We pick a dimension, 
eg 300

Dense vectors: word2vec

36

Randomly initialize all vectors –
Start with no information

aardvark

…
…

d

zebra

50K Main idea: 
Train these vectors to 
reflect distributional 

information

Machine learning
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context
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Corpus
word

Learning representations for a word from 
the words in its context

Every time [ I drive my car I hear that ] noise…
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Training: make word vectors close to the 
context vectors they co-occur with
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aardvark

automobile
…

zebra

Words Contexts

car

drive

…

…

Make 
similar

● How do we 
‘make’ two 
vectors similar?

● We incentivize 
the iterative 
machine 
learning process
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Training: make word vectors close to the 
context vectors they co-occur with
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aardvark

automobile
…

zebra

Words Contexts

car

drive

…

…

Make 
similar
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Training: make word vectors close to the 
context vectors they co-occur with

40

aardvark

automobile
…

zebra

Words Contexts

car

drive

…

…

Make 
similar
Result: 

become 
similar

Distributional 
hypothesis!
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Corpus
wordcontext

Training: make word vectors close to the 
context vectors they co-occur with

car drive

= ↑Dot product:
∝cosine of angle

Every time [ I drive my car I hear that ] noise…
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Corpus

Every time [ I drive my car I hear that ] noise…

wordcontext

Training: make word vectors close to the 
context vectors they co-occur with

car drive

= ↑ AND

car shrimp

= ↓
Randomly sample a 
negative example
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Now we have a classic machine learning 
problem:
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Parameters

Words Contexts

Loss function

For every word, 
context in corpus…

Stochastic 
gradient 
descent

word · context 
should be high

word · negative 
should be low
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Dense word embeddings
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aardvark

automobile
…

zebra

Words

car

drive

…

…

Contexts

Each row represents the 
co-occurrence information of 

each word
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Dense embeddings are more succinct, and 
our methods can use them better

45
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Note: dense embeddings are not 
interpretable
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● With co-occurrence word vectors:

“These two vectors are close because they both 
co-occur with the word ‘marsupial’”

● With word2vec vectors, column dimensions are a 
mystery
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d=300

47

aardvark

…
…

zebra

50K
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Note: dense embeddings are not 
interpretable
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● With co-occurrence word vectors:

“These two vectors are close because they both 
co-occur with the word ‘marsupial’”

● With word2vec vectors, column dimensions are a 
mystery

A tradeoff: more effective methods in 
CL are often less interpretable
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Should each word just get one meaning 
vector?

Word meaning is complex, and varies depending on 
the context

Classic polysemy: bank (river) vs bank (financial)

[Pustejovsky 1996]
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I dove into the water
I bought you a water

50

Should each word just get one meaning 
vector?

Word meaning is complex, and varies depending on 
the context:

(mass/count)
[Pustejovsky 1996]
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The newspaper fired its editor
John spilled coffee on the newspaper
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Should each word just get one meaning 
vector?

Word meaning is complex, and varies depending on 
the context

[Pustejovsky 1996]
(producer/product)
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A good knife
A good review
A good meal
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Should each word just get one meaning 
vector?

Word meaning is complex, and varies depending on 
the context

(sharp/favorable/tasty) [Pustejovsky 1996]
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This class:

1) Introduction to vector spaces
2) Word vectors

● Count-based word vectors
● Dense word vectors

3) Introducing language models
4) LM demo
5) LM discussion and analysis
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So, it’s possible to represent rich lexical 
information with vectors using machine 
learning…

Next step: what about everything else* 
in language?

* I’ll focus on text models, but there’s 
more “everything” in speech models!



Isabel Papadimitriou

Intro Word vectors: Introducing LMs LM Demo DiscussionCount Dense

55

Language model: a big neural network 
trained on one task:

next word prediction
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The anatomy of a language model

aardvark

…

…

zebra

Word embedding
matrix

Layers
Output: probability 

of every word

… …

P
(a

ar
dv

ar
k)

P
(z

eb
ra
)
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The anatomy of a language model
Word embedding

matrix

Input: “the cat sat on the mat”
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The anatomy of a language model
Word embedding

matrix

cat

on

sat
the

mat
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The anatomy of a language model
Input word 
embeddings

cat

on

sat

the

mat

the

L
a
y
e
r

Layer 1 
embeddings

… …

A layer is just 
operations on 

vectors

Only lets each 
vector see the 
ones before it
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The anatomy of a language model
Input word 
embeddings

cat

on

sat

the

mat

the

L
a
y
e
r

Layer 1 
embeddings

L
M

h
e
a
d

0.1 0.6 0 0 0 0 0.3

0 0 0.45 0 0.05 0 0.5

0.2 0 0 0.1 0.7 0 0

0.4 0.6 0 0 0 0 0

0 0 0.4 0.1 0.5 0 0

0 0 0.1 0.2 0.1 0.2 0.4

Output next word 
probabilities

… …
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The anatomy of a language model
Input word 
embeddings

cat

on

sat

the

mat

the

LM

Output next word 
probabilities

0.1 0.6 0 0 0 0 0.3

0 0 0.45 0 0.05 0 0.5

0.2 0 0 0.1 0.7 0 0

0.4 0.6 0 0 0 0 0

0 0 0.4 0.1 0.5 0 0

0 0 0.1 0.2 0.1 0.2 0.4

Ideally, we want 
the actual next 
word:

0 0 0 1 0 0 0

P(cat)

Objective: 
minimize this 

distance
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Training: change parameters to minimize

aardvark

…

…

zebra

Param: Word 
embedding matrix

Param: Layers
Output: probability 

of every word

… …

P
(a

ar
dv

ar
k)

P
(z

eb
ra
)

distance

distance

distance

distance

Change parameters 
so they minimize 

distances

Derivative 
(gradient)
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The anatomy of a language model
Input word 
embeddings

cat

on

sat

the

mat

the

L
a
y
e
r

Layer 1 
embeddings

L
M

h
e
a
d

0.1 0.6 0 0 0 0 0.3

0 0 0.45 0 0.05 0 0.5

0.2 0 0 0.1 0.7 0 0

0.4 0.6 0 0 0 0 0

0 0 0.4 0.1 0.5 0 0

0 0 0.1 0.2 0.1 0.2 0.4

Output next word 
probabilities

… …
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This class:

1) Introduction to vector spaces
2) Word vectors

● Count-based word vectors
● Dense word vectors

3) Introducing language models
4) LM demo
5) LM discussion and analysis
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Language model demo

https://colab.research.google.com/drive/12bS65Y
vg8qO6t5--w6a6Mo2GpyV3JyXk?usp=sharing 

(you can access this too)

https://colab.research.google.com/drive/12bS65Yvg8qO6t5--w6a6Mo2GpyV3JyXk?usp=sharing
https://colab.research.google.com/drive/12bS65Yvg8qO6t5--w6a6Mo2GpyV3JyXk?usp=sharing
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This class:

1) Introduction to vector spaces
2) Word vectors

● Count-based word vectors
● Dense word vectors

3) Introducing language models
4) LM demo
5) LM discussion and analysis
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Why does this simple idea work so well?

● Next-word prediction is difficult to do well

● There really are no shortcuts

○ There’s a lot of shortcuts in other tasks, eg 
sentiment analysis

● It wasn’t a task that people used to attempt

● We now have the data, compute, and models 
to try, and it has revolutionized the field
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Discussion: Is next-word prediction 
realistic?

● How does LM training relate to what babies do?

●  Social: not trying to predict, trying to be involved

●  Grounded: “look at the doggy!”

● Much less data: 10 million vs trillions of words

○ But: what about replay in humans?
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How do LMs learn different aspects of 
language?

● Every* piece of text is created by a human who:

○ Has a grammar system

○ Knows the real world and meaning

○ Is writing with a communicative intent

○ Is writing in a social context

● Implicit information
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Short primer on LM interpretability

● Two main approaches:

○ Look at those layer embeddings: when are 
they close/far, and why?

○ Intervene on training: what is necessary or 
sufficient in different cases?

● Do language models learn and represent 
language like we think humans do?

(my research!)
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Discussion: can we learn something about 
language?

● This is kind of controversial

● Language models are not the human brain

● But we can learn about:

○ The information in language

○ General learnability under different conditions

○ Possibilities for how it can be done!
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This class:

1) Introduction to vector spaces
2) Word vectors

● Count-based word vectors
● Dense word vectors

3) Introducing language models
4) LM demo
5) LM discussion and analysis

Thanks!


