How to get from linguistics to LLMs: Language in vector spaces

Isabel Papadimitriou

Ling 83, Apr 21 2025

LM Demo

Discussion

Motivating question:

How can we get everything that's going on in language...

... into a computational model?

A: Through learning how to represent language in large, continuous vector spaces

"...what light through yonder window breaks" = [21.2, 112, 6.8, 22.0 ...]

This class:

- 1) Introduction to vector spaces
- 2) Word vectors
 - Count-based word vectors
 - Dense word vectors
- 3) Introducing language models
- 4) LM demo
- 5) LM discussion and analysis

Discussion

By the end of this class you'll:

- Understand some of the basic ideas behind modern computational linguistics (and why we do what we do)
- Have some familiarity with loading, using, and understanding a language model

This class:

- 1) Introduction to vector spaces
- 2) Word vectors
 - Count-based word vectors
 - Dense word vectors
- 3) Introducing language models
- 4) LM demo
- 5) LM discussion and analysis

Symbolic representation is great but not enough for comp. ling

- Language is symbolic
- We take a complex, continuous world, and we compress it into symbols like "apple" or "jump"
- Language analysis is full of **abstract ideas**, like "noun phrase" or "phoneme"
- But, if we want to make a computational model, we simply can't take into account every abstraction at once

• A point in *n*-dimensional space (for our purposes)

• A point in *n*-dimensional space (for our purposes)

- Our *perception* stops at 3 dimensions, but we don't have to
- Vectors are a very flexible abstraction for describing anything that has many features

A 10-feature vector:

[1, 0, 8, 4, 10, 0, 5, 2, 2, 9]

eg, "A farm with 1 pig, 0 cows, 8 chickens, 4 ducks..."

So, we can get some semantic structure from putting words in vector spaces

- This is great, because vectors can be **inputs** to computational models
- Vector representations give models some sense of the nebulous idea of **semantic relatedness**

Vector semantics mean that models don't learn every meaning separately

Language Model Task:

Predict the next word, the Predict the next word, the previous word was "good" provious word was "great"

Classic ngram model: no relation...

Vector semantics mean that models don't learn every meaning separately

Language Model Task:

previous word was "good" previous word was "groot"

Predict the next word the Discretic the next word, the previous word was Vector distance bus word was $[1, 6, 3, 18, \ldots] \longleftrightarrow [2, 6, 2, 15, \ldots]$

Vector spaces capture many **different types** of relationships simultaneously

Lots of information:

- 1) Medium distance
- 2) Similar valence
 - 3) Different arousal

This is very powerful as we scale up to **many dimensions**!

Semantic relationships are multifaceted

- Similarity (desk \leftrightarrow table)
- Relatedness (dog \leftrightarrow leash)
- Semantic frames (buy \leftrightarrow sell)
- Register (automobile \leftrightarrow couture)
- Affect (beaming \leftrightarrow great)

Can we make a highdimensional vector space to capture this complexity?

This class:

- 1) Introduction to vector spaces
- 2) Word vectors
 - Count-based word vectors
 - Dense word vectors
- 3) Introducing language models
- 4) LM demo
- 5) LM discussion and analysis

We can't think of every feature...

• It's hard to hand-construct enough interesting features!

(This is a big theme of computational linguistics)

 Let's see if we can use some things we know to make a computational model where we don't choose the features

Distributional semantics

If two words have almost identical **environments**, they have almost identical **semantics**

"oculist", "eye doctor"

[Zellig Harris, 1954]

• We wanted a vector representation of **meaning...**

Idea: represent the **environment** as a vector

Idea: Count word co-occurrences

• If we have a corpus of language data...

context word
... Every time [I drive my car I hear that] noise...

• Count: how many times does a word **appear in the context window** of a center word?

Counting word-word co-occurrences

Introducing LMs

LM Demo

Discussion

Co-occurrence rows are vectors!

Co-occurrence rows are vectors!

	aardvark	 computer	data	result	pie	sugar
	0	 2	8	9	442	25
	0	 1,670	1,683	85	5	4

"cherry" "digital"

[Jurafsky and Martin 2023, from Wikipedia corpus]

Co-occurrence rows are vectors!

	aardvark	 computer	data	result	pie	sugar
cherry	0	 2	8	9	442	25
digital	0	 1,670	1,683	85	5	4

- We can ask: How similar are these words? Why are they similar?
- There's ways to improve these vectors, like by lessening the weight of common words like "the"

[Jurafsky and Martin 2023, from Wikipedia corpus]

Our count vectors make a good representation that computers can use

Except... 50K is a lot of dimensions!

Q: What is the meaning of "spoon"?

A: Well, it never appears with "aardvark" ... it often appears with "food"... ...

This is clearly an inefficient way to describe meaning

Introducing LMs

LM Demo

Discussion

Co-occurrence vectors are sparse

Intuitively: many **more numbers** in each vector than the **information** they contribute

This class:

- 1) Introduction to vector spaces
- 2) Word vectors
 - Count-based word vectors
 - Dense word vectors
- 3) Introducing language models
- 4) LM demo
- 5) LM discussion and analysis

This class:

- 1) Introduction to vector spaces
- 2) Word vectors
 - Count-based word vectors
 - Dense word vectors
- 3) Introducing language models
- 4) LM demo
- 5) LM discussion and analysis

Discussion

Can we use distributional information to learn more succinct embeddings?

• Same data: corpus of word co-occurrences

Every time [I drive my **car** I hear that] noise…

 Main idea: train classifiers to predict this distributional information

Introducing LMs

LM Demo

Discussion

Dense vectors: word2vec

d We pick a dimension, eg 300

Randomly initialize all vectors – Start with no information

> Main idea: **Train** these vectors to reflect distributional information

Machine learning

Learning representations for a word from the words in its context Corpus

context word Every time [I drive my car I hear that] noise...

LM Demo

Discussion

Now we have a classic machine learning problem:

Parameters

Loss function

Words Contexts

word • context should be high

word • negative should be low Stochastic gradient descent

Introducing LMs LM Demo

Contexts

Discussion

Dense word embeddings

Each row represents the co-occurrence information of each word

Introducing LMs LM Demo

Dense embeddings are more succinct, and our methods can use them better

Note: dense embeddings are not interpretable

With co-occurrence word vectors:

"These two vectors are close because they both co-occur with the word 'marsupial'"

 With word2vec vectors, column dimensions are a mystery

Note: dense embeddings are not interpretable

With co-occurrence word vectors:

"These two vectors are close because they both co-occur with the word 'marsupial'"

With word2vec vectors, column dimensions are a

A tradeoff: more effective methods in CL are often less interpretable

Should each word just get one meaning vector?

Word meaning is complex, and varies depending on the context

Classic polysemy: bank (river) vs bank (financial)

[Pustejovsky 1996]

Discussion

Should each word just get one meaning vector?

Word meaning is complex, and varies depending on the context:

I dove into the **water** I bought you a **water**

(mass/count)

[Pustejovsky 1996]

Should each word just get one meaning vector?

Word meaning is complex, and varies depending on the context

The **newspaper** fired its editor John spilled coffee on the **newspaper**

(producer/product)

[Pustejovsky 1996]

Should each word just get one meaning vector?

Word meaning is complex, and varies depending on the context

A **good** knife A **good** review A **good** meal

(sharp/favorable/tasty)

[Pustejovsky 1996]

Isabel Papadimitriou 52

This class:

- 1) Introduction to vector spaces
- 2) Word vectors
 - Count-based word vectors
 - Dense word vectors
- 3) Introducing language models
- 4) LM demo
- 5) LM discussion and analysis

Discussion

So, it's possible to represent rich **lexical** information with vectors using machine learning...

Next step: what about **everything else*** in language?

* I'll focus on **text models**, but there's more "everything" in **speech models**!

Language model: a big neural network trained on one task:

next word prediction

Word embedding matrix

Input: "the cat sat on the mat"

Word embedding

matrix

cat mat on sat the

Introducing LMs

LM Demo

Discussion

Introducing LMs

Training: change parameters to minimize

Introducing LMs

LM Demo

Discussion

This class:

- Introduction to vector spaces 1)
- 2) Word vectors
 - Count-based word vectors
 - Dense word vectors
- 3) Introducing language models
- 4) LM demo
- **5)** LM discussion and analysis

LM Demo

Discussion

Language model demo

https://colab.research.google.com/drive/12bS65Y vg8qO6t5--w6a6Mo2GpyV3JyXk?usp=sharing

(you can access this too)

This class:

- 1) Introduction to vector spaces
- 2) Word vectors
 - Count-based word vectors
 - Dense word vectors
- 3) Introducing language models
- 4) LM demo
- 5) LM discussion and analysis

Why does this simple idea work so well?

- Next-word prediction is difficult to do well
- There really are no shortcuts
 - There's a lot of shortcuts in other tasks, eg sentiment analysis
- It wasn't a task that people used to attempt
- We now have the data, compute, and models to try, and it has revolutionized the field

Discussion: Is next-word prediction realistic?

- How does LM training relate to what **babies** do?
- Social: not trying to predict, trying to **be involved**
- **Grounded**: "look at the doggy!"
- Much less data: 10 million vs trillions of words
 - But: what about **replay** in humans?

Discussion

How do LMs learn different aspects of language?

- Every* piece of text is created by a human who:
 - Has a **grammar** system
 - Knows the real world and **meaning**
 - Is writing with a **communicative intent**
 - Is writing in a **social context**
- Implicit information

Short primer on LM interpretability (my research!)

- Two main approaches:
 - Look at those layer embeddings: when are they close/far, and why?
 - Intervene on training: what is necessary or sufficient in different cases?
- Do language models learn and represent language like we think humans do?

Discussion: can we learn something about language?

- This is kind of controversial
- Language models are not the human brain
- But we can learn about:
 - The **information** in language
 - General learnability under different conditions
 - **Possibilities** for how it can be done!

This class:

- 1) Introduction to vector spaces
- 2) Word vectors
 - Count-based word vectors
 - Dense word vectors
- 3) Introducing language models
- 4) LM demo
- 5) LM discussion and analysis

Discussion

