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Transfer learning has practical applications

=™ 1 English — @ World

L Model ) Transfer learning Languages

But also an analysis methodology for understanding
data and learning

Power machine learning models let us explore
guestions about language in new ways
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Shared structures between modalities
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Structural Transfer: a testbed for linguistic
structure hypotheses
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Structural Transfer: a testbed for linguistic
structure hypotheses
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Structural Transfer: a testbed for linguistic
structure hypotheses
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Using structural transfer learning to explore the
role of structure in language and language
learning
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Transfer learning in NLP

Recent NLP: pretrain so much, that the task can be
described in language. Prompting

Transfer learning now

Looking beyond the dominant languages where
we can do things like prompting

And for understanding structure
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Structure and language

Structure is characteristic of human language

Most obviously in syntax

But also beyond syntax

o Meaning, discourse, reference, information structure

What structural biases are sufficient for language
learning?

(beyond this talk) Role of communication and language
use in creating structure PR
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Three hypotheses about language

Recursion

Constituents  “Clumping” The cat sat on the mat

I think that[the cat sat on the mat]

You always accuse me that[I think that the[cat sat on the mat]}
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Three hypotheses about language

1) Recursion

Nesting Context-free

/ / N\

The lawyer that the man that the dog bit hired was disbarred

J

Y Y Y
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Three hypotheses about language

Crossing links and dependencies

Linking in meaning and reference

N/ A \

“I voted for him even though ! am negatively affected by his redistribution policies” said
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Three hypotheses about language

Crossing links and dependencies

And syntactic structures

~
/NN

... mer es huus aastriiche

... we the children Hans the house let help  paint
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Three hypotheses about language

Zipfian vocabulary distribution

‘the”

Lipfion”
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Outline

What are useful for human language
learners?

o Disentangling the effects of recursive and linking
structures

How does transfer as a
structural bias?

o The structural effect of vocabulary
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Outline

What are useful for human language
learners?

o Disentangling the effects of recursive and linking
structures
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Exploring inductive bias

Pretty limited l .
.7 + linguistic exposure Language learning

Use transfer learning to test different structural
inductive learning biases
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Transfer learning methodology
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Symbolic pretraining languages

Nesting
Parentheses
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Nested Parentheses Primitive

S
S S
S S

/\ /\
S S S
AN N P ™

1, 54, 54, 225 225, 1, 248 103 123, 123, 103, 248,

Well-nested, matching pairs

Constituents
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Symbolic pretraining languages

Nesting Crossing
Parentheses Dependencies
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Crossing Dependencies

)
N\ N\
T\ /\ /S
1( 54( 225( 1y 54, 225y 248 248, 123 103 123, 103,

Tokens have to match, but not nest
Where does the structure come from?

o Dependency length distribution: sample from
empirical distances of nesting parentheses
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Symbolic pretraining languages

Nesting Crossing

Parentheses Dependencies
Controls: Rand Regular
zlerelnn repetition
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Simple Repetition Primitive

Randomly sample k words, then repeat them, then
randomly sample k words...

499 472 300 345 272(499 472 300 345 272)309 17 15

(Example is for k=5, we do k=10 in experiments)
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Symbolic pretraining languages

(
Nesting Crossing
Parentheses Dependencies
Controls: Rand Regular
zlerelnn repetition
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Nesting structure helps language learning
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Multilingual case — Japanese and Basque
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Symbolic pretraining languages

Nesting Crossing
Parentheses Dependencies

. Reqular
Controls: Random g

repetition
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Question: does nesting really help? Or would
any structure help?

499 472 300 345 272(499 472 300 345 272)309 17 15
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Not just any structure has this effect
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Again, a multilingual effect

Japanese Basque
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Symbolic pretraining languages

Nesting Crossing
Parentheses Dependencies

Controls: Rand Regular
zlerelnn repetition
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Crossing links, without nesting, provide a
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Perplexity on Japanese
(lower is better)

This is also true across languages

Japanese
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The kinds of structure that make language are
multifaceted

Structural transfer lets us explore hypotheses
about structure in language

Language as a learnable system, independent
of linguistic theory
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Mixing nesting and crossing parentheses

A language that is mostly nesting, with 1%, or 10%
of parentheses not following the structure

S S

S S
S s /é\
A5 P ™ #TN
1, 54, 54, 225.(225, 1, 248, 103 )123 123, 103, 248,
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Slightly breaking constituent structure makes
better language learners
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Perplexity on Japanese
(lower is better)

Also a multilingual effect

Japanese Basque
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Structural inductive bias through transfer learning

Complex structural relationships are important in
language

Multiple crossing dependencies a good starting point
for language learning

Computational models as hypothesis generators:
testing linguistic structure in theory-free ways
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Outline

What are useful for human language
learners?

o Disentangling the effects of recursive and linking
structures
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Outline

e How does vocabulary distribution transfer as a
structural bias?

o The structural effect of vocabulary
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The lexicon in linguistics

A good amount of structure is in the vocabulary:

Vocabulary distribution g7

Structure in meaning Dinfian”

and also in grammar

o Properties like transitive verb
o Constructions, like “Let alone”

O
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We throw out the vocabulary between
pretraining and fine-tuning

lar Fine-tuning vocabulary

(1 (2 )249 )250  cat,dog ... book ... ameliorate ...
Voca s\0-499 Vocabulary indices 0-50K
What the model reec\J PN
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Structural Transfer: a testbed for linguistic
structure hypotheses
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Does a Zipfian vocabulary distribution in
pretraining have a structural effect?

Even though we discard vocabulary information
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Yes, Zipfian information is transferred
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... but does not necessarily combine with structure

Vocab Distribution [ Uniform

[ Zipfian
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The role of vocabulary in transfer learning is an
interesting problem

Vocabulary Lexical
embedding matrix  representations

“The cat Biaaaasass |||||||||||/ I
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The role of vocabulary in transfer learning is an
interesting problem

A practical problem: without enough data, it's hard to
see a word often enough to learn a good vector

A puzzle: how is structural information separated
between vocabulary matrix and model weights?

o Vocabulary information like distribution can have
structural effects
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Transfer learning, language, and structure

understanding structure in language | Model

Transfer learning is a test bed for [ Data 1 J+ Data 2
learning

Computational models of cognitive processes can't

prove anything — but they serve as interesting
hypotheses generators

‘ MATERIAL
EVIDENCE| |

It's an exciting time: machine learning opens up
new avenues for exploring questions in language
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